Characterization of wireless personal dosimeter prototype for Interventional Radiology medical operators

L. Servoli1, M. Biasini1,2, L. Bissi1, A. Calandra1,2, B. Checchiucci1, S. Chiocchini2, R. Cicioni2, E. Conti1,2, R. Di Lorenzo1,3, A. C. Dipilato2, N. Forini2, D. Magalotti1,4, A. Maselli3, M. Paolucci1,3, D. Passeri1,2, A. Pentrinici1,5, P. Placidi1,2, M. Scarpignato1, A. Scorzonini1,2.

1 INFN – Section of Perugia, ITALY
2 University of Perugia, ITALY
3 AUSL 2 Umbria – Terzi, ITALY
4 University of Modena and Reggio Emilia, ITALY
5 AUSL 1 Umbria – Perugia, ITALY

I. INTRODUCTION

- Interventional Radiology (IR) is a minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance:
 - high levels of exposure of patients and medical staff to X-rays can induce detrimental effects
 - international guidelines in radiation protection restrict the number of procedures that operators can undertake [NCRP 133].
- External monitoring is currently acquired through passive personal dosimeters [effective dose (whole body) and equivalent dose (hands, arms, legs,...)].
- The authors present the characterization and calibration of a wireless dosimeter prototype to perform on line monitoring of the staff during interventional procedures, by using a CMOS Active Pixel Sensor as radiation detector.

II. THE ACTIVE PERSONAL DOSIMETER

- Main features of the commercially available active personal dosimeters:
 - semiconductor technology
 - real-time evaluation of dose and/or dose rate
 - alarm at a pre-set dose and/or dose rate level (opt.).
- Performance is not satisfactory for X-ray fields used in IR procedures (low energies and pulsed fields) [Villani, 2013]. With pulsed X-ray beams the response decreases:
 - as the dose equivalent rate increases
 - from 10 to 40% when pulse rate increases from 1 to 20 ps.
- We propose a device based on an Active Pixel Sensor (APS) based on the following requirements:
 - sensitivity from 5 to several tens of keV photons (X-ray) dose and dose rate measurement accuracy better than 10%
 - wireless device
 - small form factor and lightweight (wearable).
- System architecture:
 - Sensor
 - Digital signal processing unit
 - Control unit
 - Wireless interface
 - Graphical user interface.

III. THE DOSIMETER PROTOTYPE RAPID-0

- A first dosimeter prototype, RAPID-0, has been constructed using commercial components (sensor board, microcontroller with wireless module) and a custom board where are hosted the CPLD for data elaboration and services.
- CMOS image sensors can be used as ionizing radiation detectors [Servoli, 2012].
- The selected sensor (11.43 x 11.43 mm2 package form factor) is a standard VGA (640 x 480 pixels), 5.6 x 5.6 µm2 pixel size, optimized for 30 fps.

IV. THE CALIBRATION PROCEDURE

- Photon detection is carried out by using a clustering algorithm to reconstruct the photon energy grouping all the pixels where the signal has been divided.
- Only a limited number of pixels shares the signal generated by the photon with a weak dependence from photon energy, in the tens of keV range.
- Single photon identification can thus be used to measure the photon flux.
- The sensor response to the X-ray radiation has been calibrated using monochromatic (fluorescence) or quasi-monochromatic (transmission) photon beams.
- The calibration coefficient is known with a precision better than 5%.
- The prototype has also been tested in real Interventional Radiology procedures. The 10 Hz acquisition rate allows to follow closely the X-ray tube operations.
- A precise monitoring of the absorbed dose during the procedure hence become possible.

V. TEST WITH DIFFUSED X-RAYS

- The prototype has been calibrated using monochromatic (fluorescence) or quasi-monochromatic (transmission) photon beams.
- The sensor performance as an X-ray radiation detector has been evaluated with a dedicated experimental set-up.
- Two dosimetric observables have been assessed from the frames acquired by the sensor using a clustering algorithm.
- Two different dosimetric quantities being compatible with the real time requirements have been defined from a subset of the collected data.

VI. CONCLUSIONS

- Intervencion radiology (IR) is a minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance:
 - high levels of exposure of patients and medical staff to X-rays can induce detrimental effects
 - international guidelines in radiation protection restrict the number of procedures that operators can undertake [NCRP 133].
- External monitoring is currently acquired through passive personal dosimeters [effective dose (whole body) and equivalent dose (hands, arms, legs,...)].
- The authors present the characterization and calibration of a wireless dosimeter prototype to perform on line monitoring of the staff during interventional procedures, by using a CMOS Active Pixel Sensor as radiation detector.

References

- [NCRP 133] National Council on Radiation Protection and Measurement, NCRP, “Radiation protection for procedures performed over a frame shows a linear correlation with measured dose by TLD.

Contact person: Leonello Servoli, INFN Perugia (ITALY), e-mail: leonello.servoli@pg.infn.it